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Abstract: We estimate the effective heavy quark and antiquark potential in the quark

gluon plasma using the gravity dual theory. Two models are considered: AdS5 and Sakai-

Sugimoto model. The effective potential, obtained by using the rotating fundamental

open-string configurations, has the angular momentum dependence which generalizes the

static central potential. For zero angular momentum case, we obtain asymptotic form of the

potential for general metric n, and for both gravity dual models where n = 3, 4. The mass

dependence of the potential is derived at the leading order together with its temperature

dependence. Motivated by the asymptotic form for zero angular momentum state, we fit

the effective potential for J = 1, 2 states in the binding region. The fitting parameters are

found to be functions of temperature. Finally, we discuss the differences and similarities of

the effective potential between the two gravity dual models. An interesting result is that

position of the minimum of the potential is determined only by angular momentum and

independent of the temperature.
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1. Introduction

J/ψ, a cc̄ bound state, is a good probe for the formation as well as the properties of the

quark gluon plasma (QGP). At low temperature, the interaction between c and c̄ can be

phenomenologically described as Coulomb-like potential 1/r. Because of confinement, one

would expect there is additional linear potential σr which is dominant at long distance.

When the temperature increases, the string tension σ decreases. At the critical temperature

where deconfinement phase transition takes place, one would expect that σ ≃ 0. In QGP,

the existence of deconfined quarks and gluons would modify the interaction between quark

and antiquark such that the static potential

V (r) = −α(T )

r
e−r/rD(T ), (1.1)

where rD, Debye screening radius, is the decreasing function of temperature. Roughly

speaking, once the screening radius is smaller than the radius of J/ψ, the quarkonium will

dissociate. The dissociation of J/ψ can be used as the signature of the formation of QGP

as well as its temperature profile [1].

One can calculate the heavy quark and antiquark potential using the AdS/CFT cor-

respondence [2, 3]. At zero temperature, the potential [4]

V = −4π2
√

λ4

Γ(1
4)4

(

1

r

)

, (1.2)
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where λ4 ≡ g2
YMN ≡ 4πgsN and r is the distance between quark and antiquark. One

can see that the potential is proportional to −1/r. However, the confining potential σr

is dominant at large distance in cold nuclear matter. Therefore we can see this model is

more accurate to the deconfined phase where the σ disappears, which requires the tem-

perature to be higher than the deconfinement temperature Tc. In order to take into ac-

count the temperature and thermal phenomena of the gauge plasma, one can consider a

Schwarzschild-anti-de Sitter Type IIB supergravity compactification [5].

In the gravitational dual picture, the meson is obtained using the fundamental string

whose two ends are connected with the probe brane. The two ends of this string represent

the quark and antiquark separately. The position of the probe brane sitting at certain point

in the radial direction is proportional to the mass of the quark. Since one expects that

the presence of the probe brane would not affect the geometry in the leading order, it is

necessary to put the probe brane far away from the branes which produce the gravitational

background, and hence the large mass of the quark and antiquark. In the dual picture,

there are two configurations which are competing with each other. One is the fundamental

string connecting the quark and antiquark which corresponds to the bound state. The other

is the two strings stretching from the probe brane to the horizon which represents the free

quark and antiquark. At given temperature, one needs to compare the energy difference of

these two configurations. It is used to determine the critical separation between quark pairs

at which the bound states dissociate. The dissociation of bound state really implies the

situation when the energy of the parallel strings is lower than the connected configuration.

Then it is always preferred energetically for the pair to be separated as free quarks. Using

this strategy, one would see that at finite temperature the potential between heavy quark

and antiquark exhibits short-range asymptotic behaviour [6] which is qualitatively similar

to the color-screened potential in eq. (1.1).

The results from the gravity dual theory show that the static heavy quark potential

has −1/r behaviour at zero temperature and short-range asymptotic behaviour at the finite

temperature. This results in scaling of the screening length L∗ with 1/T for states with

zero angular momentum. It was also demonstrated that the screening length of the quark

antiquark state scales with velocity of the moving meson as L∗ ∼ (1− v2)1/4 [7]. However,

one may ask if we can obtain the effective potential for the excited heavy quark bound states

with nonzero angular momentum from the gravity dual theory. Excited heavy quark and

antiquark bound states could have the non-zero angular momentum and spin. The potential

between heavy quarks which can move arbitrarily in the bound states would depend on

the spin, angular momentum, as well as the velocity (e.g. see explicit form calculated using

dual QCD in ref. [8]). Therefore, the potential would be more complicated than the static

potential. Once the complete potential between heavy quark pairs is obtained, we can use

it in the Schrödinger equation to get the complete spectrum of the mesonic states (see e.g.

ref. [9]).

Due to the success of the gravity dual theory to describe the static potential of heavy

quark pair, we are optimistic and hope to estimate the equivalent potential for the excited

bound states from the gravity dual picture. To obtain the gravity dual picture, we boost the

gravitational background metric [10] for two different models: AdS5 and Sakai-Sugimoto

– 2 –
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model. Taking advantage of the numerical technique, we calculate the effective potential of

excited bound state as a function of the separation between quark pairs r, at fixed angular

momentum J and temperature T . The result shows that for each fixed angular momentum

J and given temperature T , the effective potential becomes positive at small distance

due to the angular momentum effect being dominant in this region. At the intermediate

distance, the potential turns negative where the static binding potential dominates. Finally

it becomes positive again at large distance because of screening effect. We also calculate

the static potential for ℓ ≡ J = 0 at nonzero temperature for two different models. The

difference between the two models is discussed.

This paper is organized as the following. In section II, we demonstrate how introduc-

tion of the angular momentum barrier allows the effective potential to become positive at

large distance, and therefore the existence of the “screening length”. In section III, we

analytically and numerically obtain the effective potential for ℓ = 0 and excited ℓ = 1, 2

bound states of heavy quark pair using the gravity dual models. The shape of effective

potential produced by the gravity dual models are qualitatively similar to the expected

4-dimensional result from section II. Significant differences between the two gravity dual

models, n = 3, 4, are discussed. In section IV, fitting of the effective potential for excited

ℓ = 1, 2 states to the asymptotic form Veff = Cn − αn/r2/(n−2) motivated from ℓ = 0 case

is performed and shows exceptionally good fit. We summarize our results in section V.

2. Heavy quark and antiquark potential

Because of the larger mass of heavy quark e.g. charm and bottom, the bound states of

heavy quark and antiquark can be described using the potential model. One can expect

that the heavy quark and antiquark bound state may be described by the solutions of the

nonrelativistic Schrödinger equation [9, 11]

− ~
2

2µ
▽2 Ψ(r) + [V (r) − E]Ψ(r) = 0 (2.1)

where µ is the reduced mass of the quark-antiquark, with µ = m/2 for cc̄, bb̄ quarkonium

states. For the central potential, the wave function Ψ(r) can be written as

Ψ(r) = R(r)Yℓm(θ, φ), (2.2)

where R(r) is the radial wave function and Yℓm is the spherical harmonic function. With

this substitution, the radial wave function satisfies

− ~
2

2µ

(

d2

dr2
+

2

r

d

dr

)

R(r) −
[

E − V (r) − ℓ(ℓ + 1)~2

2µr2

]

R(r) = 0. (2.3)

One can define the effective potential

Veff(r, ℓ) = V (r) +
ℓ(ℓ + 1)~2

2µr2
, (2.4)

where ℓ is the quantum number for the orbital angular momentum. The term induced

by orbital angular momentum ℓ(ℓ + 1)~2/2µr2 forms an angular momentum “barrier”

– 3 –



J
H
E
P
0
6
(
2
0
0
7
)
0
4
6

0.5 1 1.5 2 2.5 3
r

-1.5

-1

-0.5

0

0.5

1
V
e
f
f

l=0

10 20 30 40 50
r

-0.002

0

0.002

0.004

0.006

0.008

V
e
f
f

l=1

Figure 1: The effective potential between quark and antiquark in the quark gluon plasma for

ℓ = 0 (left) and ℓ = 1 (right) at finite temperature from eq. (2.5). Potential barrier induced by the

orbital angular momentum can modify the effective potential so that the potential actually becomes

positive at distance larger than a finite “screening length” L∗ as shown in the figure on the right.

For demonstration purpose, we set rD = 10 for ℓ = 1 figure. The screening length L∗ ∼ 16 is

substantially larger than the screening radius rD = 10 in this case.

∼ 1/r2 dominating at small distance r. This angular momentum barrier is crucial when we

consider fundamental differences between ℓ = 0 and ℓ > 0 quarkonium states when they

are submerged into the QGP as we will see in the following.

In the deconfined phase such as QGP, the linear confining potential σr becomes zero.

The remaining is the Coulomb-like potential which would be screened by the plasma.

Analogous to the QED plasma, the screening QCD potential between quark and antiquark

in the quarkonium submerged in the gauge plasma can be expressed as in eq. (1.1). The

effective potential then becomes

Veff =
ℓ(ℓ + 1)~2

2µr2
− α(T )

r
e−r/rD(T ) (2.5)

where rD is the Debye screening radius.

The effective potential for ℓ = 0 state approaches zero from below but never actually

crosses over and becomes positive. On the other hand, the potential barrier induced when

ℓ > 0 modifies the total potential such that at finite distance L∗ > rD, the effective potential

changes sign and becomes positive for r > L∗ as is shown in figure 1. To distinguish

L∗ where Veff actually becomes zero from the Debye screening radius rD, we will call it

“screening length” hereafter.

The “melting” or dissociation of the bound state of quark and antiquark could be

understood as the tunneling of the quark (antiquark) from the region where Veff < 0,

through the region of potential barrier Veff > 0, to the large r region where it is effectively

free. It is also possible that the thermal kinetic energy of the quark in the QGP (≃ kBT )

is substantially larger than the binding effective potential and thus resulting in almost

complete dissociation of the ℓ > 0 states (see e.g. figure 1). This could explain why the

ℓ = 0 states are much harder to “melt” comparing to ℓ > 0 states.

We can see that the angular momentum induces significantly distinctive features to the

effective potential and consequently to the behaviour of the excited quarkonium states. It
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is desirable to understand the more precise form of the potential as well as its dependence

on the temperature so that we would gain more understanding of the properties of the

QGP as well as the determining factors of the melting of quarkonia with varying angular

momentum when they are submerged into the plasma.

3. Effective quark antiquark potential from gravity dual models

In section II, one can see that nonrelativistic Schrödinger equation may be used to solve

the heavy quark bound states provided that we have the correct form of the potential. The

question is the exact nature of the screening potential between quark and antiquark in the

deconfined phase at finite temperature. Analogy to QED plasma suggests the form of the

screening potential in the form of the Debye screening, eq. (1.1). This form is expected

from the perturbative calculation [12] but there is no guarantee it would remain valid in

the regime where the ’t Hooft coupling is large.

A complementary approach to calculate the effective potential when the gauge inter-

action is strongly coupled with the large ’t Hooft coupling is by means of the AdS/CFT

correspondence [4]. One may ask if it is possible to obtain ℓ dependent effective potential

Veff(r, ℓ) in the gravitational dual picture. In the following part, we are going to obtain

this kind of effective potential by boosting the background metric.

In order to calculate the potential between the rotating quark and antiquark pair, we

consider the following 5 dimensional metrics

ds2 =

(

u

Rn

)n/2
(

−fn (u) dt2 + dρ2 + ρ2dϕ2 + dz2
)

+

(

Rn

u

)n/2 du2

fn (u)
(3.1)

where

fn (u) = 1 − un
h

un
, (3.2)

u is the radial direction. z is the direction perpendicular to the plane of rotation and

position of the horizon uh = 16
9 π2R3

3T
2, πR2

4T for n = 3, 4 respectively.

The n = 3 metric, known as Sakai-Sugimoto model [13] (we ignore details of the

compact 5 dimensional manifold here assuming no Kaluza-Klein excitations with respect

to these directions) in the high temperature phase [14], is the near-horizon limit of the

metric induced by a configuration of Nc D4-branes intersecting with Nf D8-branes and

Nf anti-D8-branes. The (anti-)D8-branes are located at x4 = 0, (L) of the compactified

x4 around which the D4-branes wrap. The string theory in this background is dual to

the maximally supersymmetric SU(Nc) Yang-Mills theory in 1 + 4 dimensions with one

dimension compactified on a circle with radius R3.

The n = 4 metric is the near-horizon limit of the metric induced by a configuration

of N D3-branes in the 1+9 dimensional background. In this limit, the non-compact 5

dimensional subspace is approximately AdS5. The string theory in this background is dual

to the supersymmetric N = 4 Yang-Mills in 1+3 dimensions when the other compact

5 dimensional manifold is S5. The horizon in the gravity picture induces the scale and
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Hawking temperature into the theory [5]. These quantities are identified as ΛQCD and

temperature of the quark gluon plasma in the dual gauge picture.

In order to calculate the potential between quark and antiquark in the gravity dual

picture, it is suffice to consider the classical action of the string configuration.

The Nambu-Goto action is given by

S =
1

2π

∫

dτdσ
√

det(GMN∂αXM∂βXN ). (3.3)

From the above background metric in eq. (3.1), (3.2), the generic action for a general

worldsheet gauge, τ = t, u = u(σ), ρ = ρ(σ), ϕ = ωt, is

S =
1

2π

∫

dtdσ

√

(

u′2

fn (u)
+

(

u

Rn

)n

ρ′2
)

(fn − ω2ρ2), (3.4)

where u′, ρ′ is the derivative with respect to σ.

In order to calculate the potential and solve the equation of motion, we assign the

following ansatz for the rotating connected-string configuration,

t = τ, ρ = σ, u = u (ρ) , ϕ = ωt. (3.5)

The Nambu-Goto action becomes

S =
1

2π

∫

dtdρ

√

(

u′2

fn (u)
+

(

u

Rn

)n)

(fn − ω2ρ2), (3.6)

where u′ is the derivative with respect to ρ.

Then the potential for the connected string configuration whose ends located at ρ = ρ0

is

V =
1

π

∫ ρ0

0
dρ

√

(

u′2

fn (u)
+

(

u

Rn

)n)

(fn (u) − ω2ρ2). (3.7)

The conserved angular momentum can be calculated from ∂L/∂ω as

J =

∫ ρ0

0
dρ

ωρ2
(

u′2

fn(u) +
(

u
Rn

)n)

√

(

u′2

fn(u) +
(

u
Rn

)n)

(fn (u) − ω2ρ2)

. (3.8)

We will identify the classical angular momentum J of the classical string with the orbital

angular momentum quantum number ℓ of the quarkonium (instead of
√

ℓ(ℓ + 1)) and use

them interchangeably in this article. The quantum mechanical spin of the quark and

antiquark in the quarkonium will be ignored since we consider only the bosonic string in

the gravity dual picture.

The corresponding regulating potential for the parallel strings configuration can be

calculated in another worldsheet gauge,

t = τ, u = σ, ρ = ρ0, ϕ = ωt. (3.9)
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The potential then becomes

V ′ =
1

π

∫ umax

uc

√

1 − ρ2
0ω

2

fn(u)
du (3.10)

where uc = uh/(1−ρ2
0ω

2)1/n, the minimum distance in the u-direction for rotating parallel

strings. It is interesting to note that in the rotating metric, the position of horizon where

parallel strings end is shifted from uh to uc = uh/(1 − ρ2
0ω

2)1/n > uh. The equation of

motion in this gauge for parallel strings configuration is trivially satisfied since ∂L/∂(∂σu) =

L for the Lagrangian L.

On the other hand, the equation of motion for the connected-string configuration is

d

dρ









1
√

(

u′2

fn
+

(

u
Rn

)n)

(fn − ω2ρ2)

u′

fn

(

fn − ω2ρ2
)









(3.11)

−
f ′

n

(

u′2

f2
n

ω2ρ2 +
(

u
Rn

)n)

+ nun−1

Rn
n

(

fn − ω2ρ2
)

2

√

(

u′2

fn
+

(

u
Rn

)n)

(fn − ω2ρ2)

= 0.

For general situation where ω 6= 0, we can numerically solve the equation of motion for

a given boundary condition u(ρ0) = umax, u
′(ρ0) → ∞ and given value of the ω. The

relationship between Veff and other quantities such as J and r ≡ 2ρ0 can be obtained by

eliminating the parameter ω.

In this article, we set umax = 20, Rn = 1 throughout our numerical analysis. The

umax (mass) dependence of Veff for ℓ = 0 case is given in subsection 3.1. The dependence

of the binding part of the potential on Rn, for umax → ∞ limit, is R3
3, R

2
4 for n = 3, 4

respectively. The choice of Rn determines the strength of the binding potential of the

quarkonium in the QGP and as we will see in eq. (3.19), R4 = 1 leads to α4 ≃ 0.23 (of

the binding potential of the form −α4/r) which is close to the value used in conventional

potential models [1].

3.1 The potential for ω = 0 (ℓ = 0) case

For this case, we have additional constant of the motion since the Lagrangian does not

depend on ρ explicitly,

A ≡ L − u′ ∂L

∂u′
=

fn

(

u
Rn

)n

√

u′2 + fn

(

u
Rn

)n
, (3.12)

from which

r = 2

∫ umax

ub

R
n

2
n u

n

2

0
√

(

un − un
h

) (

un − un
b

)

du, (3.13)
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where ub = (un
h + un

0 )
1

n , un
0 = A2Rn

n, and umax is position of the probe brane. The effective

potential V − V ′, from eq. (3.7) and eq. (3.10), can then be expressed as

V − V ′ =
1

π

(

∫ umax

ub

√

un − un
h

√

un − un
b

du −
∫ umax

uh

du

)

. (3.14)

We will first consider the effective potential in umax → ∞ limit and then calculate the

leading order umax (mass) dependence subsequently.

Effective potential in umax → ∞ limit: for T = 0 in the umax → ∞ limit of this

ω = 0 (ℓ = 0) case, the regulated potential becomes

Veff(r, T = 0) = − 1√
π

Γ(1 − 1
n)

Γ(1
2 − 1

n)

[

2
√

π

nr

Γ(1 − 1
n)

Γ(3
2 − 1

n)
Rn/2

n

]1/(n

2
−1)

. (3.15)

The potential has the form V ∼ −λ5/r
2,−

√
λ4/r with the ’t Hooft coupling λ5,4 =

27πR3
3/2, R

4
4 for n = 3, 4 respectively, in agreement with ref. [15].

For nonzero temperature in umax → ∞ limit, by using asymptotic expansion as in

ref. [6], we can obtain the leading order contribution with respect to λ as (see generic form

for general n in appendix A)

Veff(r, T ) = Cn(T ) − α′
n

λ1/(n−2)

r2/(n−2)

[

1 + O((rT )2n/(n−2))
]

, (3.16)

where λ = λ5,4 for n = 3, 4 and Cn(T ) is a constant which is the increasing function with

respect to the temperature and that Cn(0) = 0,

Cn(T ) =
uh

π
(3.17)

=

(

2

3

)5

λ5T
2,

√

λ4T for n = 3, 4 (3.18)

and

α′
n =











( 32
27π2 )(Γ(2

3 )Γ(1
2 )/Γ(1

6 ))3 ≃ 0.00963 for n = 3,

2
π (Γ(3

4 )Γ(1
2 )/Γ(1

4 ))2 ≃ 0.2285 for n = 4.

The other terms of the potential are of the positive power of rT and therefore sup-

pressed as long as r < 1/T . From eq. (3.16), it is obvious that Veff(r = L∗, T ) = 0 gives,

at the leading order,

L∗T =
√

α′
3(3/2)

5, α′
4 ≃ 0.2704, 0.2285 for n = 3, 4. (3.19)

Note that the screening length L∗ is independent of λ regardless of n.

The numerical plots of the effective potential at nonzero temperature for each gravity

dual are presented in figure 2. We found that the fits to 1/r2, 1/r for n = 3, 4 are valid with

great accuracy for the physical range of r close to the screening length into the binding

region. The asymptotic expansion works very well as long as the physical range of r under

consideration is not too large. This provides a strong motivation to fit the form eq. (3.16)

to the binding region of more complicated cases with ℓ > 0 as we will see in section IV.
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Figure 2: The effective potential for ℓ ≡ J = 0 as a function of the distance between quark and

antiquark for the metric n = 3 (left) and n = 4 (right) for the ℓ = 0 states. The solid line is for

T = 0.20GeV, the dashed line is for T = 0.25GeV, and the dashed-dot line is for T = 0.30GeV.

umax (mass) dependence of the effective potential: we have set umax → ∞ for the

above analytical calculations. The limit umax → ∞ provides universal form of potential

for heavy quarkonia in the very large mass limit. On the other hand, the specific mass

dependence of the potential can be achieved when we fix umax (∼ m, mass of the quark)

to some large finite value.

From eq. (3.14), we can explicitly express umax-dependent piece of Veff as

Veff = Veff(umax → ∞) + Veff(umax) (3.20)

Veff(umax) = − 1

π

(

∫ ∞

umax

√

un − un
h

√

un − un
b

du −
∫ ∞

umax

du

)

(3.21)

= −umax

π

(

∫ ∞

1

√

1 − (h/y)n
√

1 − (b/y)n
dy −

∫ ∞

1
dy

)

, (3.22)

where h, b ≡ uh,b/umax.

By expanding with A = h, b,

(1 − (A/y)n)±1/2 = 1 ∓ 1

2

(

A

y

)n

+
±1

2(±1
2 − 1)

2!

(

A

y

)2n

+ . . . , (3.23)

we obtain

Veff(umax) = −umax(b
n − hn)

2π(n − 1)
+

umaxh
nbn

4π(2n − 1)
+ . . . . (3.24)

We can eliminate b by using eq. (3.13),

r = 2

∫ umax

ub

R
n

2
n u

n

2

0
√

(

un − un
h

) (

un − un
b

)

du

= 2Rn/2u(2−n)/2
max

√
bn − hn

b1−n

n

(
∫ 1

0
−

∫ bn

0

)

y−1/n

√
1 − y

√

1 − (h/b)ny
dy

= 2Rn/2u(2−n)/2
max

b(2−n)/2

n

√

1 −
(

h

b

)n [

an 2F1

(

n − 1

n
,
1

2
;
3

2
− 1

n
;

(

h

b

)n)

+ O(u1−n
max)

]

.
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where an is given in appendix A. Taking the leading contribution with respect to O((h/b)n),

and inverting to obtain

bn =
1

un
max

(

2anRn/2

nr

)2n/(n−2)

− n2

(n − 2)(3n − 2)
hn [1 + O((h/b)n)] + . . . . (3.25)

We substitute eq. (3.25) into eq. (3.24) to obtain the leading order (with respect to umax, uh)

dependence of effective potential on the mass (defined at T = 0), m ≡ umax/2π as

Veff(m) ≃ m1−n

(n − 1)(2π)n





4(n − 1)2

(n − 2)(3n − 2)
un

h −
(

2anRn/2

nr

)2n/(n−2)


 . (3.26)

The mass dependence contribution is sufficiently suppressed even at umax = 20. For n =

3, 4, the leading order mass dependence Veff(m) ∼ O(1/m2), O(1/m3) respectively. The

r-dependence of Veff(m) is interestingly of order O(1/r6), O(1/r4) and the temperature

dependence is ∼ T 6, T 4 for n = 3, 4 metric model. It is interesting to compare this result

with the mass-dependent potential calculated in other approaches such as pNRQCD (see

ref. [16] and references therein). Note that our result, eq. (3.26), is applicable when the

quarkonium is submerged in the QGP.

For (ω) ℓ > 0 case, since we are more familiar with the Coulomb-like potential ∼ 1/r

from the n = 4 AdS5 gravity dual, we will first consider the effective potential calculated in

this case in subsection 3.2. The effective potential calculated in the n = 3 Sakai-Sugimoto

model will then be considered subsequently in subsection 3.3. Comparison between the

two gravity dual models will be discussed in subsection 3.4.

3.2 Effective potential from n = 4 metric, AdS5 model

From eq. (3.15), we can derive the well known result for the Coulomb-like potential at

zero temperature for ℓ = 0 state, Veff ∼ −√
λ4/r. At nonzero temperature, the asymptotic

expansion also gives Veff ∼ −
√

λ4/r as the leading order contribution with respect to

the large ’t Hooft coupling λ4 [6]. The next-to-leading order C4(T ) term is a constant

proportional to the temperature T (uh(n = 4) ∼ T ) and the other terms are of positive

power of rT and therefore suppressed as long as r < 1/T .

As in eq. (2.5), we expect that inclusion of the angular momentum barrier brings in

positive 1/r2 term dominant at small r as well as reducing the value of the screening

length L∗ when compared with ℓ = 0 case at the same temperature (see table I of ref. [17]).

The effective potential of the states with ℓ ≡ J = 1, 2 at varying temperature is given in

figure 9, 10 respectively.

At T = 0, ℓ = 1, the potential starts with positive value at small r due to the angular

momentum effect and turns negative around r = 0.04 fm. The effective potential becomes

minimal at r = 0.06 fm and becomes less negative at larger distance but never becomes

positive. It is obvious that as temperature gets higher, the potential becomes weaker

and the screening length gets shorter. Interestingly, the distance r0 where the potential

is minimum is the same regardless of the temperature. Position of the minimum, r0, is
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determined only by the angular momentum J of the string. As we will see later on, this

interesting behaviour also exists in the case of n = 3 Sakai-Sugimoto model for both ℓ = 1, 2

cases (as long as T > Tc).

The behaviour of ℓ = 2 is very similar but somewhat fading out comparing to ℓ = 1

case. This is the sign that the state with ℓ = 2 is less tightly bound and it is much easier to

dissociate than ℓ = 1. We can see that from figure 5 of ref. [17], ℓ = 2 state melts around

T = 0.24 GeV while ℓ = 1 does not melt as T goes as high as 0.45 GeV or so (we will see

later in figure 3 that it melts around T = 0.59 GeV)1. It should be emphasized that the

position of minimum r0 is fixed and independent of temperature as in ℓ = 1 case.

The numerical results show that for given temperature T , one encounters two different

regions for r > r0 relevant to the melting of quarkonium. When the separation between

quark and antiquark r < aJ/T (where aJ is the constant determining the screening length

depending on J), there is the Coulomb-like behavior. When r > aJ/T , one can see that

the potential would cross over the r-axis and becomes positive. The quark and antiquark

become free and the bound state dissociates.

3.3 Effective potential from n = 3 metric, Sakai-Sugimoto model

At zero temperature for ℓ = 0 state, the potential from this metric is Veff ∼ −λ5/r
2. Even

though this is not necessarily physical since we expect a phase transition to different metric

when the temperature T drops below Tc, this form of potential provides hint to what kind

of r dependence the effective potential has for generic ℓ at nonzero temperature.

At nonzero temperature, the asymptotic expansion for ℓ = 0 gives Veff ∼ −λ/r2 +

C3(T ). The next-to-leading-order term C3 is proportional to T 2 (uh(n = 3) ∼ T 2) as

opposed to T of the n = 4 case.

For ℓ > 0, we present the results in figure 11, 12 for ℓ ≡ J = 1, 2 respectively. The

angular momentum barrier is dominant at small r. The effective potential turns negative

around r = 0.05 ∼ 0.06 fm for ℓ = 1, and around r = 0.085 ∼ 0.095 fm for ℓ = 2. The

minimum of potential is at r0 = 0.065 (0.11) fm for ℓ = 1 (2). The melting of ℓ = 1, 2

occurs at T = 0.50, 0.35 GeV respectively as we can see in figure 3.

The general shape of the potential curve for ℓ = 2 does not change much from ℓ = 1

in this metric model in contrast to the case of n = 4 metric. This is due to the smaller

curvature with respect to the radial direction u of Sakai-Sugimoto model. The state with

higher angular momentum will be rotating at larger distance in u coordinate and the effect

of curvature will be seen more distinctively between the two gravity dual models. We can

see that the melting temperature for ℓ = 2 states in n = 3 model is around 0.35 GeV,

considerably higher than that of n = 4, around 0.24 GeV, as is shown in figure 3. The

ℓ = 2 states of n = 4 metric model dissociate much earlier and easier.

1Even though the effective potential is negative in certain region, it is not necessarily true that it

always admits quantum mechanical bound states in that region (e.g. if the binding region is too shallow).

Therefore quarkonium, in practice, start to dissociate at lower temperature than the melting temperature

determined classically when Veff ≥ 0 (for all r) as in figure 3. We can think of the classically determined

melting temperatures as the upper bounds on the melting temperatures above which complete dissociation

is guaranteed.
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Figure 3: The effective potential when the quarkonium melts, n = 3, ℓ ≡ J = 1, T = 0.50GeV

and ℓ ≡ J = 2, T = 0.35GeV on the left and n = 4, ℓ ≡ J = 1, T = 0.59GeV and ℓ ≡ J = 2, T =

0.24GeV on the right.
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Figure 4: T = 0.20GeV, ℓ ≡ J = 1 (2) for n = 3, 4 on the left (right).

From figure 11, 12, we can see that the screening length of this metric model is inter-

estingly shorter than that of n = 4 model for ℓ = 1, and larger than the value of n = 4 for

ℓ = 2 at the same temperature.

3.4 Comparison between the two metric models

The curvature of the dual metric relevant to the physics of the gauge plasma is the one

with respect to the radial direction u. In our setup, the higher n naturally implies higher

curvature and we expect the n = 4, AdS5 model to show certain enhancing effects when

compared to the n = 3 Sakai-Sugimoto model. The rotating string with higher angular

momentum will be spinning at further distance from the horizon and we expect to see

effects of curvature more distinctive than states with lower angular momentum.

These curvature effects can be seen in figure 3-5. Figure 3 shows the melting temper-

atures for ℓ = 1, 2 states for each gravity dual model. While the melting temperature for

ℓ = 1 state of n = 4 is higher than that of n = 3, the melting temperature for ℓ = 2 state

becomes drastically lower than that of n = 3 model.

In figure 4, it is obvious that n = 3 potential binds stronger than the potential of n = 4

metric model, with much higher binding energies. We can see that even at T = 0.20 GeV,
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Figure 5: T = 0.20GeV, ℓ ≡ J = 1, 2 for n = 3, (4) on the left (right).

n J = 1 2

3 0.065 fm 0.11 fm

4 0.06 fm 0.15 fm

Table 1: The values of distance r0 where the effective potential Veff(r, T ) is minimum for the dual

metric n = 3, 4.

the ℓ = 2 state of n = 4 already almost melts away while the same state of n = 3 is still

strongly bound.

Figure 5 represents comparison between states with ℓ = 1, 2 for each metric. The

separation of r0 in n = 3 model is about 0.045 fm, much lower than in n = 4 where the

gap of r0 between ℓ = 1, 2 is around 0.09 fm. The values of the minimum of potential r0

are summarized in table 1.

It is observed in subsection 3.3 that the screening length for ℓ = 1 (2) from n = 3

model is smaller (larger) than the corresponding value from n = 4 model. Interestingly,

from eq. (3.19) and figure 2, the screening length of ℓ = 0 state from n = 3 metric model

is also found to be larger than the value from n = 4 model.

Finally, we also found numerically that the angular momentum J does NOT depend on

the temperature T , only depends on ω, r. We can see from figure 9-12 that for fixed value

of J and ω, r is determined to be the same for each temperature curve (points with the

same ω are on the same r once J is fixed). It appears that submerging quarkonium into the

QGP at varying T does not affect its angular momentum. In other words, the interaction

between QGP and quark (antiquark) is radial and preserving angular momentum.

4. Fitting of the effective potentials in the binding region

From eq. (3.16) in the case of ℓ = 0, it is natural to wonder if this form of effective potential

also describes the binding region of the more general ℓ > 0 cases. By considering the shape

of Veff in both metric models, a simple guess is that far away from the angular momentum

barrier ∼ 1/r2, the binding region r0 < r < L∗ should be approximated to a good precision
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Figure 6: The fitting of the physical binding region r0 < r < L∗ with Veff(r, T ) = C3 − α3/r2 for

ℓ ≡ J = 1, n = 3 dual metric.
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Figure 7: The fitting of the physical binding region r0 < r < L∗ with Veff(r, T ) = C4 − α4/r for

ℓ ≡ J = 1, n = 4 dual metric.

by the asymptotic form Veff = Cn(T )− αn(T )/r2/(n−2). We actually found that this is the

case.

In figure 6 and 7, the fits to ℓ ≡ J = 1 for both metric models are demonstrated at

T = 0, 0.20 GeV. We also found that the same fitting works very well for the case ℓ = 2.

Remarkably, the fitting works well at any temperature for both ℓ = 1, 2 for both metric

models. The values of the best fit parameters for ℓ = 1, 2 are summarized in table 2, 3

respectively.

A few observations can be made regarding the fit values of αn(T ), Cn(T ). For both

ℓ = 1, 2 cases, Cn is an increasing function of the temperature T for both metric models.

The dependence of αn on the T is a bit more complicated. For ℓ = 2 in both models,

αn(T ) is a decreasing function of the temperature. On the other hand for ℓ = 1, αn(T )

increases with T until around T = 0.10 GeV, then drops steadily as T gets larger. Since

the deconfinement temperature Tc is larger than 0.10 GeV, we can say that in QGP phase,

αn(T ), for each ℓ, n, is a decreasing function of T . This is in contrast to ℓ = 0 case where

αn is constant (containing ’t Hooft coupling).

In figure 8, the nature of increasing function of temperature Cn(T ) for ℓ = 1, 2 appears

consistent with the fact that for ℓ = 0, C3,4(T ) ∼ T 2, T respectively. There is small
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T/ GeV α3/ (GeV)(fm)2 α4/ (GeV)(fm) C3/ GeV C4/GeV

0 0.00695 0.04004 0 0

0.10 0.00709 0.04126 0.0480 0.11230

0.20 0.00648 0.04037 0.1591 0.19646

0.25 0.00618 0.0390 0.2428 0.23014

0.30 0.00596 0.03758 0.3484 0.26211

0.35 0.00538 0.03503 0.4315 0.28031

0.40 0.00447 0.03194 0.4802 0.29134

Table 2: The values of the fitting parameters αn, Cn for the binding region r0 < r < L∗ for the

dual metric n = 3, 4 for ℓ ≡ J = 1.

T/ GeV α3/ (GeV)(fm)2 α4/ (GeV)(fm) C3/ GeV C4/GeV

0 0.01149 0.04266 0 0

0.10 0.01135 0.03779 0.0450 0.07936

0.17 0.01004 0.03132 0.1149 0.11608

0.20 0.00926 0.02639 0.1465 0.11995

0.25 0.00830 N/A 0.2226 N/A

0.30 0.00623 N/A 0.2631 N/A

Table 3: The values of the fitting parameters αn, Cn for the binding region r0 < r < L∗ for the

dual metric n = 3, 4 for ℓ ≡ J = 2.
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Figure 8: The temperature dependence of the fitting parameter Cn(T ) for ℓ ≡ J =

1 (left), 2 (right).

deviation at large T from the ℓ = 0 form due to rotation effects.

5. Conclusions and discussions

We have considered the effective potential between heavy quark and antiquark being sub-

merged in the QGP for the states with ℓ = 0, 1, 2. We have shown that even in conventional

color-screened potential, introduction of the angular momentum barrier makes the excited

states of quarkonium much less tightly bound, as well as making the potential at nonzero

– 15 –



J
H
E
P
0
6
(
2
0
0
7
)
0
4
6

0.05 0.1 0.15 0.2 0.25
rHfmL

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

V
e
f
f
H
G
e
V
L

T= 0.4 GeV

T= 0 GeV

n=4,j=1

Figure 9: n = 4, ℓ ≡ J = 1, T = 0, 0.20, 0.25, 0.30, 0.40GeV from bottom to top respectively.
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Figure 10: n = 4, ℓ ≡ J = 2, T = 0, 0.17, 0.20, 0.30GeV from bottom to top respectively.

0.05 0.1 0.15 0.2 0.25
rHfmL

-1

-0.5

0

0.5

V
e
f
f
H
G
e
V
L

T= 0.4 GeV

T= 0 GeV

n=3,j=1

Figure 11: n = 3, ℓ ≡ J = 1, T = 0, 0.20, 0.25, 0.30, 0.40GeV from bottom to top respectively.

temperature crossing over zero value at finite distances. We define the distance where the

effective potential turns from negative to positive as distance grows as “screening length”

L∗, in contrast to the screening radius rD where the potential is suppressed exponentially
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Figure 12: n = 3, ℓ ≡ J = 2, T = 0, 0.17, 0.20, 0.25, 0.30GeV from bottom to top respectively.

but not exactly zero.

The effective potentials for ℓ = 0 at zero and nonzero temperature at the leading

order are derived analytically for general n (= 3, 4) in our setup, eq. (3.15), (3.16) (see

also appendix A). The asymptotic expansion works well as long as r < 1/T . The mass

dependence of the effective potential, eq. (3.26), is derived at the leading order together with

its temperature dependence. The leading order mass dependence is of O(1/m2), O(1/m3)

for n = 3, 4 respectively. This dependence remains even at zero temperature and depends

on r as O(1/r6), O(1/r4) for n = 3, 4.

The numerical plots of the effective potential Veff(r, T ) are given for each metric model

with ℓ ≡ J = 0, 1, 2 at various temperature values. An intriguing observation is that

the position of the minimum r0 of the effective potential is fixed once we fix the angular

momentum, independent of the temperature. Only angular momentum determines r0 of

the effective potential for each metric model.

Due to higher curvature, the AdS5 metric model gives “early-melting” potential for

states with high angular momentum. As is shown in ref. [17], while ℓ = 2 state of n = 3

model resists to melting until T = 0.35 GeV, ℓ = 2 of n = 4 melts as early as T = 0.24 GeV.

The shape of Veff for ℓ = 2 of n = 4 metric model also shows very lightly bound potential

at low temperature.

The angular momentum of the quark antiquark system shows independence with re-

spect to the temperature of the QGP, depending only on ω and r. This can be understood

that as long as the interaction between quark and antiquark calculated from the gravity

dual models is radial, angular momentum of the bound state will not be altered as the

temperature changes.

Finally, fitting of the asymptotic form Veff = Cn(T )−αn(T )/r2/(n−2) (motivated from

ℓ = 0 case) to the potential of ℓ = 1, 2 states in both metric models works very well for zero

and nonzero temperature. While the constant Cn is an increasing function of temperature,

the constant αn is a decreasing function for T > Tc.
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A. Asymptotic form of effective potential for ℓ = 0

Since n could be related to p of the Dp-branes which act as the source generating the curved

background metric of the gravity dual as n = 7 − p, it is useful to express the asymptotic

form of the effective potential Veff(r, T ) for ℓ = 0 in umax → ∞ limit, eq. (3.16), as function

of generic n,

Veff(r, T ) =
uh

π
− 1

π

(

1

2
− 1

n

)

Bnan

r2/(n−2)

[

1 + O((rT )2n/(n−2))
]

, (A.1)

where

Bn =

(

2anRn/2

n

)2/(n−2)

, (A.2)

with

an =
Γ(1 − 1

n)Γ(1
2 )

Γ(3
2 − 1

n)
. (A.3)
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